Source code for eval_framework.metrics.completion.rouge_l

from eval_framework.exceptions import LogicError
from eval_framework.metrics.base import BaseMetric, MetricResult
from eval_framework.shared.types import Completion


[docs] class ROUGE_L(BaseMetric[Completion]): """ROUGE-L""" NAME = "ROUGE-L"
[docs] def calculate(self, response: Completion) -> list[MetricResult]: if response.error is not None: return [MetricResult(metric_name=self.NAME, value=None, higher_is_better=True, error=response.error)] if response.completion == "": return [MetricResult(metric_name=self.NAME, value=0.0, higher_is_better=True, error=response.error)] if None in response.ground_truth_list: raise LogicError("When calculating ROUGE-L ground_truth cannot be None.") # ROUGE-L is essentially an F1 score, but it’s a specific F1 score based on # the Longest Common Subsequence (LCS) between a candidate summary and a reference summary. rouge = max([_calculate_rouge_l(response.completion, gt) for gt in response.ground_truth_list]) # type: ignore[arg-type] return [MetricResult(metric_name=self.NAME, value=float(rouge), higher_is_better=True, error=response.error)]
def _longest_common_subsequence_length(candidate_tokens: list[str], reference_tokens: list[str]) -> int: candidate_len, reference_len = len(candidate_tokens), len(reference_tokens) lcs_matrix = [[0] * (reference_len + 1) for _ in range(candidate_len + 1)] for i in range(candidate_len + 1): for j in range(reference_len + 1): if i == 0 or j == 0: lcs_matrix[i][j] = 0 elif candidate_tokens[i - 1] == reference_tokens[j - 1]: lcs_matrix[i][j] = lcs_matrix[i - 1][j - 1] + 1 else: lcs_matrix[i][j] = max(lcs_matrix[i - 1][j], lcs_matrix[i][j - 1]) return lcs_matrix[candidate_len][reference_len] def _calculate_rouge_l(completion: str, ground_truth: str) -> float: lcs_length = _longest_common_subsequence_length(completion.split(), ground_truth.split()) if lcs_length == 0: return 0.0 precision = lcs_length / len(completion.split()) recall = lcs_length / len(ground_truth.split()) if precision + recall == 0: f1_score = 0.0 else: f1_score = (2 * precision * recall) / (precision + recall) return f1_score