Source code for eval_framework.metrics.llm.llm_judge_chatbot_style

from eval_framework.llm.base import BaseLLM
from eval_framework.metrics.base import MetricResult
from eval_framework.metrics.llm.base import BaseLLMJudgeMetric
from eval_framework.metrics.llm.graders.chatbot_style_grader import ChatbotStyleGrader
from eval_framework.metrics.llm.graders.language import Language
from eval_framework.shared.types import Completion


[docs] class LLMJudgeChatbotStyle(BaseLLMJudgeMetric): NAME = "Chatbot Style" def __init__(self, llm_judge: BaseLLM): super().__init__(llm_judge) self._grader = ChatbotStyleGrader(llm_judge)
[docs] def calculate(self, response: Completion) -> list[MetricResult]: if response.error is not None: return [MetricResult(metric_name=self.NAME, value=None, higher_is_better=True, error=response.error)] language = Language(response.get_instruction_language()) grading = self._grader.grade( completion=response.sanitized_completion, language=language, ) return [ MetricResult( metric_name=self.NAME, value=float(grading.is_chatbot_style) if grading.is_chatbot_style is not None else None, higher_is_better=True, llm_judge_prompt=grading.judge_prompt, llm_judge_response=grading.judge_response, error=response.error, ) ]