Source code for eval_framework.metrics.llm.llm_judge_coherence

from eval_framework.llm.base import BaseLLM
from eval_framework.metrics.base import MetricResult
from eval_framework.metrics.llm.base import BaseLLMJudgeMetric
from eval_framework.metrics.llm.graders.coherence_grader import CoherenceGrader
from eval_framework.metrics.llm.graders.language import Language
from eval_framework.shared.types import Completion


[docs] class LLMJudgeCoherence(BaseLLMJudgeMetric): NAME = "Coherence" KEYS = [ "coherence_score", ] def __init__(self, llm_judge: BaseLLM): super().__init__(llm_judge) self._grader = CoherenceGrader(llm_judge)
[docs] def calculate(self, response: Completion) -> list[MetricResult]: if response.error is not None: for key in self.KEYS: return [ MetricResult( metric_name=f"{self.NAME} - {key}", value=None, higher_is_better=True, error=response.error ) ] language = Language(response.get_instruction_language()) grading = self._grader.grade( instruction=response.system_user_instruction, completion=response.sanitized_completion, language=language, ) result = MetricResult( metric_name=f"{self.NAME}/coherence_score", value=grading.coherence_score, higher_is_better=True, llm_judge_prompt=grading.judge_prompt, llm_judge_response=grading.judge_response, error=response.error, ) return [result]