Source code for eval_framework.metrics.llm.llm_judge_completion_accuracy

from eval_framework.llm.base import BaseLLM
from eval_framework.metrics.base import MetricResult
from eval_framework.metrics.llm.base import BaseLLMJudgeMetric
from eval_framework.metrics.llm.graders.language import Language
from eval_framework.metrics.llm.graders.long_context_grader import LongContextGrader
from eval_framework.shared.types import Completion


[docs] class LLMJudgeCompletionAccuracy(BaseLLMJudgeMetric): NAME = "Judge Completion Accuracy" def __init__(self, llm_judge: BaseLLM): super().__init__(llm_judge) self._grader = LongContextGrader(llm_judge)
[docs] def calculate(self, response: Completion) -> list[MetricResult]: if response.error is not None: return [MetricResult(metric_name=self.NAME, value=None, higher_is_better=True, error=response.error)] assert isinstance(response.ground_truth, str) language = Language(response.get_instruction_language()) grading = self._grader.grade( expected_output=response.ground_truth, completion=response.sanitized_completion, language=language, ) return [ MetricResult( metric_name=self.NAME, value=float(grading.answer_is_correct) if grading.answer_is_correct is not None else None, higher_is_better=True, llm_judge_prompt=grading.judge_prompt, llm_judge_response=grading.judge_response, error=response.error, ) ]