Source code for eval_framework.tasks.benchmarks.hellaswag_de

import re
from typing import Any

from eval_framework.metrics.loglikelihood.accuracy_loglikelihood import (
    AccuracyLoglikelihood,
    AccuracyNormLoglikelihood,
)
from eval_framework.tasks.base import NO_SUBJECT, BaseTask, Language, ResponseType


[docs] class HELLASWAG_DE(BaseTask[str]): """Hellaswag dataset: https://huggingface.co/datasets/LeoLM/HellaSwag_de available data set sections: train (1k rows), validation (10k rows)""" NAME = "HellaSwag German" DATASET_PATH = "LeoLM/HellaSwag_de" SAMPLE_SPLIT = "validation" FEWSHOT_SPLIT = "train" RESPONSE_TYPE = ResponseType.LOGLIKELIHOODS METRICS = [AccuracyLoglikelihood, AccuracyNormLoglikelihood] SUBJECTS = [NO_SUBJECT] LANGUAGE = Language.DEU @staticmethod def _preprocess(prompt: str) -> str: # remove bracketed text prompt = prompt.strip() prompt = prompt.replace(" [title]", ". ") prompt = re.sub("\\[.*?\\]", "", prompt) prompt = prompt.replace(" ", " ") return prompt def _load_dataset(self, subject: str) -> None: super()._load_dataset(subject) new_dataset = {} for split, items in self.dataset.items(): # in the valid split, only 10035 out of 10042 items are well translated new_dataset[split] = [item for item in items if len(item["endings_de"]) == len(item["endings"])] self.dataset = new_dataset def _get_instruction_text(self, item: dict[str, Any]) -> str: subject = self._preprocess(item["activity_label_de"]) question = self._preprocess(item["ctx_de"]).strip() return f"{subject}: {question}" def _get_ground_truth(self, item: dict[str, Any]) -> str | None: ground_truth_index = int(item["label"] if item["label"] != "" else 0) choices = [self._preprocess(ending) for ending in item["endings_de"]] return f" {choices[ground_truth_index]}" def _get_possible_completions(self, item: dict[str, Any]) -> list[str] | None: return [f" {self._preprocess(ending)}" for ending in item["endings_de"]]