Source code for eval_framework.tasks.benchmarks.piqa

from typing import Any

from eval_framework.metrics.loglikelihood.accuracy_loglikelihood import (
    AccuracyLoglikelihood,
    AccuracyNormLoglikelihood,
)
from eval_framework.metrics.loglikelihood.confidence_weighted_accuracy import ConfidenceWeightedAccuracy
from eval_framework.metrics.loglikelihood.dcs import DistributionalCorrectnessScore
from eval_framework.metrics.loglikelihood.ternary import TernaryScore
from eval_framework.tasks.base import NO_SUBJECT, BaseTask, Language, ResponseType


[docs] class PIQA(BaseTask[str]): """PIQA dataset: https://huggingface.co/datasets/ybisk/piqa""" NAME = "PIQA" DATASET_PATH = "ybisk/piqa" SAMPLE_SPLIT = "validation" # 1838 examples (same split as lm-eval) FEWSHOT_SPLIT = "test" # 3084 examples RESPONSE_TYPE = ResponseType.LOGLIKELIHOODS METRICS = [AccuracyLoglikelihood, AccuracyNormLoglikelihood] SUBJECTS = [NO_SUBJECT] PERTURBATION_UNMODIFIABLE_WORDS = ["Question"] LANGUAGE = Language.ENG def _get_instruction_text(self, item: dict[str, Any]) -> str: return f"Question: {item['goal']}\n" def _get_fewshot_target_text(self, item: dict[str, Any]) -> str: ground_truth = self._get_ground_truth(item) assert ground_truth is not None return f"{self._get_cue_text(item)}{ground_truth}" def _get_cue_text(self, item: dict[str, Any]) -> str: return "Answer:" def _get_ground_truth(self, item: dict[str, Any]) -> str | None: truth = item["sol1"] if item["label"] == 0 else item["sol2"] return f" {truth}" def _get_possible_completions(self, item: dict[str, Any]) -> list[str] | None: return [f" {choice}" for choice in [item["sol1"], item["sol2"]]]
[docs] class PIQA_IDK(PIQA): NAME = "PIQA_IDK" METRICS = [ AccuracyLoglikelihood, AccuracyNormLoglikelihood, ConfidenceWeightedAccuracy, DistributionalCorrectnessScore, TernaryScore, ] def _get_initial_prompt_text(self, item: dict[str, Any]) -> str: return ( "Complete the sentence only if you are confident, since mistakes may be penalised, while correct " "answers receive points. It is acceptable to answer with 'I do not know' if you are unsure, and " "you will receive 0 points." ) def _get_possible_completions(self, item: dict[str, Any]) -> list[str] | None: completions = super()._get_possible_completions(item) return (completions or []) + [" I do not know"]